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Abstract

A code-less processor that enables designers to achieve
optimal in-system FPGA configuration as well as embed
built-in self-test capabilities into boards and systems is
presented.  This system BIST architecture enables
designers to lower system costs and design effort while
satisfying test and field engineering requirements for
simplified product test.

Motivation

A number of products now utilize programmable logic
devices, such as FPGAs, CPLDs, and programmable non-
volatile memories, such as EEPROM, Serial EEPROM
and FLASH. These devices support the adoption of
programmable architectures, which enable system
designers to achieve a quick time to market through field
upgrade-able fixes and enhancements. In-the-field
reconfiguration provides a compelling value proposition
as the enhancements can extend the life of the product and
also provide downstream revenue.

In order to remotely upgrade a system in the field, access
to each volatile and non-volatile device over in-system
mission-mode busses is increasingly becoming more
difficult. Especially for boards with mezzanine cards or
multi-board backplane based systems. For the system
designer, these capabilities can add to the costs and design
effort required to develop, and later to manufacture such
configurable products. Often, the designers create their
own ad-hoc methods, which are a costly and time-
consuming and do not provide for a solution that is readily
re-usable on future product designs.

FPGA based products as shown in Figure 1 are evolving
and now routinely use high-speed memory interfaces, 4
or more different power domains, embedded FPGA based
CPUs with FLASH memory, LVDS signal interfaces, and
gigabit serial /O. As FPGA I/O technology has changed,
it poses increased problems for testing the product.
Consider FPGA Ul in the figure, test engineers would
like to use IEEE 1149.1 techniques to test the connections
with Ul programmed, its I/O using LVDS, so opens
testing to U2 can be performed. They would also like to
test Ul un-programmed (so the termination resistor will
look like a short) and fault isolation can be achieved for
stuck at faults not possible with LVDS alone. Fault
coverage on the PCB can be enhanced by downloading
‘helper circuits’ over IEEE 1149.1 into the FPGAs to
facilitate tests to high-speed memories such as DDRRAM

and FCRAM. Since GigaBit serial I/O typically does not
have ‘boundary-scan cells’ on the I/O pins, the only
method available to test them over 1149.1 is via
downloadable BERT (Bit-Error Rate Tester) circuits.
Furthermore, on-board FLASH and Serial EEPROM
configuration speeds can be enhanced through patented
“on-chip FLASH programmers” simply by downloading
them to the FPGAs [6].

The authors therefore were motivated to provide an
integrated approach to Built-In-Self-Test at the PCB and
System level. The BIST Processor described here
provides a structured approach to solving these problems,
using infrastructure IP designed for the board and system
levels.
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Previous Approaches to Embedded Test
and Configuration

Various methods have been used to implement embedded
test and configuration at the board and system levels.
Details of these approaches can be found in the
preliminary description of the BIST Processor [1]. A
summary of these approaches is provided in this section.

Software-Based Embedded Test

The typical approach used to embed test into PCBs and
systems has been to utilize functional diagnostic code.
This diagnostic code is developed by test engineers and
systems designers and stored on-board the product in the
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CPU’s FLASH memory. These embedded tests are then
used as a means to test the integrated systems, both in
manufacturing and in the field. There are several
disadvantages to this approach:

e Diagnostic code development is not automated.

e Engineers must be familiar with the functional
designs, the effects of various faults and fault classes,
in order just to begin to write software.

e Requires longer development times than boundary-
scan based ATPG or BIST and hence higher
development costs

e Requires further engineering resources to maintain
software long after product ships.

e  Test quality and fault coverage can not be easily or
automatically measured as with boundary-scan
ATPG.

e Software based embedded test requires a (mostly)
working CPU to execute.

e Diagnostic isolation for board repair is often poor.
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In addition to functional based testing, using the system
CPU in combination with an 1149.1 Test Bus Controller
(TBC) is another approach that is often used to embed
test, see Figure 2. The approach enables a foundation for
both embedded structural test and functional tests, but has
its own shortcomings in that it is necessary to modify
existing tests, convert them, and re-validate them after
each modification [2]. This is necessary since the CPU,
FLASH, and connected devices cannot be tested while the
CPU is applying the tests. The engineering resource cost
of this effort should not be overlooked when compared to
other methods.

Configuration PROMS

The method that is predominately used to configure
FPGA logic employs application specific configuration
PROMs. These PROMs are programmed with the

configuration data for the design, which is then loaded
into the FPGA’s configuration memory at power-up.
However, there are a number of issues with regards to this
method:

e TLarge FPGA designs will require multiple
configuration PROMs, impacting board area, layout,
and parts cost.

e Configuration PROMs can hold only one design,
making it difficult to design an in-the-field re-
configurable product.

e Configuration =~ PROMs  employ  proprietary
programming  methods, so they are not
interchangeable between different device vendors.

e PROMs only program FPGAs, they are not able to
update CPLDs, or other on-board non-volatiles like
FLASH or Serial EEPROM. Additional circuitry is
needed for in-the-field updates of these devices
adding to complexity and cost.

Issues surrounding PROM based configuration such as
these have driven design engineers to explore new
methods for in-system configuration. Unfortunately, this
has meant that many design teams have had to design and
develop their own custom configuration capabilities. A
custom configuration method often ends up being a ‘one-
oft” solution and so it is not cost effective. When using a
proprietary method for FPGA configuration, the lack of
coordination between configuration and test through IEEE
Std. 1149.1 or 1532 [3], [4] based test development and
validation tools increases test cost and complexity.
Embedded Self-Test through 1149.1 requires this
coordination (as discussed in the motivation section) and
this can be difficult to achieve when the self-test circuitry
cannot control or access the FPGA programming circuitry.
The result will be an undesirable loss of fault coverage.

Another common approach used to configure
programmable devices is to interface the system processor
to an 1149.1 TBC [5], and then use this access mechanism
to reconfigure the FPGA PROMs. This method is shown
in Figure 2. The major drawback with this approach is
that custom firmware must be developed for the target
PCB and each individual FPGA configuration must be
validated and debugged. Another drawback is PCB area
and parts cost since both the PROMs and now another
device the TBC and support circuitry need to be added
when ideally having one IC that could do both jobs would
be more cost and area efficient. During prototype
development FPGA engineers will be forced to have some
reliance on the software engineers to rebuild software
images to incorporate changes. With complex multi-
board systems additional care must be taken into account
so when new FPGA designs are distributed in the field
and the CPU’s PROM or FLASH is re-programmed, there
is no possibility of corrupting the PROM and hanging the
mission mode CPU. These types of risks should be
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assessed before in-house development is considered. Also
the on-going software development and software
maintenance costs when target CPUs change,
architectures change, or software development personnel
change must be accounted for. These factors can not be
overlooked when assessing the true cost of implementing
an in-house solution.

CPLD-FLASH based FPGA configuration
methods

Another popular method to configure FPGAs in-system is
by using a NOR based FLASH. Major FPGA vendors
provide downloadable designs to facilitate FPGA
programming from a FLASH on their web-sites. This
design is then programmed into a CPLD. The CPLD
design is used to sequentially access the FLASH memory
contents and provide 8 bit wide FPGA programming or
the vendors’ proprietary serial based programming data
streams. The approach has several drawbacks that could
be solved with a more unified approach to in-system
configuration. Some limitations to consider are:

e There is no data compression. There is a 1 to 1
correspondence between the FPGA configuration bits
needed and the size of the FLASH memory needed.

e  There is no bit stream re-use. If “Design A” requires
8 Megabits, 4 FPGAs on the PCB require 32
Megabits of FLASH memory.

e The CPLD is a simple blind sequencer, it does not
have flexibility for determining the presence or the
size of FPGAs and loading the appropriate design
based on that information.

e Customization and circuitry is needed to support
loading different designs into the FPGAs in the field.

e Updates in the field require erasing and
reprogramming the entire FLASH device. Anecdotal
evidence suggests more than one vendor has created
systems that fail the update process and cannot restart
since the CPU required a programmed FPGA to
access the FLASH functionally.

e There is no structured ‘rollback’, a method to return
the system to a previous version when new versions
updated in the field are problematic.

e It is a custom design, difficult to debug when FPGA
does not program correctly and there is little/no direct
FPGA vendor tool support. There are no diagnostics.

e  On-board programming of FLASH using 1149.1 and
EXTEST mode of CPLD is too slow for production
lines. A CPLD with 300 bits in its boundary register
would take 2.5 minutes to program an externally
connected 64 Megabit FLASH. Manufacturing line
cycle times are less than one minute. FLASH would
need to be programmed off-board first increasing
product costs over other methods that exist.
Reviewers and readers please see reference [6][18] to

understand more about how FLASH is programmed
with boundary-scan.

e The CPLD-FLASH method requires more test
engineering resources to develop boundary-scan tests
for the PCB. Difficult to integrate FPGA
programming with a boundary-scan based test flow -
especially since CPLD needs to be in EXTEST for
PCB level interconnect tests.

e This method is not suitable to re-configure other
devices in-system such as CPLDs, 12C/SPI EEProm
etc. A separate method must be designed and
developed to support configuration of these devices
in the field.

e  Only NOR based FLASH is supported, lower priced,
higher density NAND FLASH would require a
NAND interface which would not fit in a CPLD

e The FLASH device typically cannot be shared with
the CPU software code, requiring more PCB area for
an extra FLASH.

e The CPLD-FLASH method is limited to
programming four FPGAs using the vendors slave
serial interface. This means that multiple CPLD-
FLASH designs are needed for larger systems

e The CPLD-FLASH programming method is not
suitable for multi-board systems without engineering
circuitry to deliver the programming data throughout
the multi-PCB system

While this list appears to be lengthy, CPLD-FLASH based
FPGA configuration is one of the predominate methods
used. This is probably due to the fact that most of the
costs associated with this method are in other segments of
the product development that the designer does not get
measured on. The lack of flexibility and limitations are
also overcome with more engineering resources and
design time that most companies don’t have good cost
models on or are not easily measured in some cases.
Many of the issues only surface later during prototype
bring-up, in-the-field updates or test engineering. At that
point the design is done and it is too late to take another
approach.  The next design is done the same way, of
course, as management is convinced the problems
encountered and FPGA configuration issues on the
previous generation product are solved for the next
generation product.

Embedded Test and Configuration Processor

It has been estimated that a PCB will be tested up to seven
times during its product life [7]. This coupled with the
desire to perform test and configuration in geographically
disperse areas, provides a compelling reason to embed test
and configuration into the PCB or system itself. For
example, consider that in production manufacturing, board
level device configuration and testing would typically be
run using ICT. However, if we embed a dedicated BIST
Processor, we can eliminate the need to run boundary-
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scan based digital tests on ICT equipment. This lowers
manufacturing costs by greatly reducing the time a board
spends sitting on higher cost capital equipment. In
addition, it allows the same set of high quality tests to be
used in many different environments and throughout all
phases of the product’s life cycle. This includes lab
prototyping, volume PCB manufacturing, system
integration, vibration test, HALT/HASS test, power-up
self-test, field service and depot repair.

A dedicated BIST Processor is able to manage multiple
system configurations, so system re-configuration can
take place anywhere and engineering changes can be
easily made at any time during a product’s life cycle. A
dedicated architecture for embedded test also enables
testing of the general purpose CPU and its’ support logic,
and logging of all failures without the need for the system
to function.

To address this application, a dedicated BIST Processor
was developed, [8], [9] [10]. It functions as an embedded
centralized manager for configuring and testing PCBs and
Systems. The architecture was specifically designed to
addresses the problems associated with the previously
discussed methods, and it has many advantages and
benefits when compared to these other approaches. By
including the BIST Processor in products, board and
system designers can simplify in-system device
configuration while enabling comprehensive structural
test throughout the system, including the system’s CPU.
The BIST Processor can be provided as an IC, download-
able IP binary or as infrastructure IP that can be embedded
in an ASIC. The processor can be used at the board and
system levels and allows designers to take advantage of
cost efficiencies over the entire product life cycle. It also
provides for a scalable and reusable methodology, which
augments existing test and configuration standards.
Finally, the architecture was designed to off-load ICT
equipment, such that structural digital test and device
configuration can be done in-system, while expensive ICT
equipment can be better leveraged for analog testing.

Centralized Management for Embedded
Configuration and Test

The BIST Processor is designed around a novel
architecture enabling manufacturing tests and device
configuration suites to be developed, and validated, with
automated  PC-based  tools, and  subsequently
automatically embedded into the system. The processor is
a FPGA vendor independent solution, eliminating the
need for proprietary configuration PROMs or ad-hoc
FLASH based solutions. As a result, designers no longer
need to develop customized methods and one-off designs
for embedded in-system solutions. At power-up, or under
CPU start, a single BIST Processor can automatically run
the entire manufacturing test stream, including ASIC
ATPG tests, logic BIST, memory BIST, and board/system

interconnect tests — as well as configure all the
programmable logic devices in the system.

Figure 3 shows an example of how the BIST Processor
can be used at the board level. This also illustrates how
external automated development tools that are used for
developing and validating configuration data and test
programs connect to the BIST Processor. The flow for
development and validation with this architecture is also
shown in the figure. This three step flow is much simpler
than the embedded test flow using a Test Bus Controller
as described by Van Treuren, et. al. [2]. The TBC method
requires a second debug and validation step since the TBC
interprets results, TCK frequencies, ‘wait-times’ and some
scan operations differently than the external tools used.
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Figure 3. BIST Processor on single board
system

The BIST Processor uses PC-based IEEE 1149.1 software
tools for ATPG and debug. This development
environment then interfaces with an IEEE 1149.1
controller, which connects to the processor on the PCB.
The embedded test and configuration processor then
interfaces with an optional Scan Ring Linker (SRL) [10]
that partitions the scan paths at the board level.

As can be seen by comparing Figure 3 with Figure 2, the
embedded BIST Processor replaces the configuration
PROMS and interfaces to a FLASH memory device. The
FLASH stores the test and configuration suites of the
processor and the processor drives the 1149.1 scan chains
on the board in this example via the SRL. The processor
also interfaces with an external IEEE 1149.1 connector,
which allows communication to and from the PC-based
tools. This interface is used to develop and validate
configuration and test vectors using the external PC-based
tools. This is a major advantage in that the tools can
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communicate through the BIST processor directly to the
devices in the scan-chain during initial bring-up. This
guarantees the equivalent drive and signal integrity for the
on-board embedded configuration and test mechanism, as
was achieved with the external PC-based tools. The
external controller and the embedded processor essentially
contain the same ‘engine’ for interpreting the scan test
data and the FPGA configuration data, so their behavior is
exactly the same, including critical timing elements
needed for CPLD programming, DDRRAM tests and
advanced interconnect tests such as those performed
through IEEE 1149.6. The result is that only one
configuration and test validation step is needed,
eliminating the need to re-validate the vectors and scripts
in the embedded environment. After the test and
configuration suites are finalized through the external
connector and tools, they are downloaded into the FLASH
for embedded execution. Now the external IEEE 1149.1
equipment can be disconnected from the board, and the
BIST Processor will assume control of running the
embedded test suites and programming the FPGAs.

Test and Configuration Suites

The boundary-scan development tools enable the
engineers to create test and configuration ‘suites’ that hold
an unlimited number of test vectors and test scripts, flow
control scripts, FPGA configurations, diagnostic codes
and text messages. The current implementation of the
BIST Processor can accommodate up to 16 suites. The
processor can apply one of these 16 test and configuration
‘suites’ at power-up based on the binary value on the
Test Select bus. When all Test Select pins are ‘0, the
test selection corresponds to Suite ‘0’°, reserved as the
‘reset” suite. This reset suite is a set of user defined
procedures which are executed automatically whenever a
failure occurs. The ‘reset’ suite can be as simple as
causing an 1149.1 Test-Logic-Reset, or more complex,
such as addressing PCBs in a system and performing an
orderly shutdown. An example test suite is shown in
Figure 4. In the figure, the suite includes running standard
tests, like interconnect tests, and more advanced tests such
as an ASIC internal self-test (not to be confused with the
PCB level BIST which is achieved through the BIST
processor. The BIST Processor also has the capability to
make complex run-time decisions, for example identifying
hardware configurations and acting to test and configure
the boards and system appropriately. The BIST Processor
can also control important hardware functions needed
during configuration and test. For instance, the TCK
frequency can be lowered to 1MHz on-the-fly, in order to
program a slower device, such as a CPLD

| Suitel |

1 Check Scan Chain.script

Intercennect.svi

5 Execnbe Bist.sor ik
Target Ul

4 Program Designh.lit

i e e B eonl e el Sa e

6 Program DesignA.bit
Target U3

i Erogram BesignB.lbit

%]

Figure 4. Example Test Suite

Also shown in Figure 4 are the diagnostic codes, labeled 1
through 7. As test and configuration data are added in the
PC based development software, a new diagnostic code is
assigned. The BIST Processor uses these codes to
indicate status of the suite as it is executed. If a test fails
on power-up, its’ diagnostic code is displayed. The test
suites allow one set of configuration and test suites to be
applied at power-up and another set of suite to be applied
based on ‘select’ pins on the processor. Alternate test
suites can be executed at a time other than power-up, such
as during a maintenance mode or update of the system.
For instance, CPLDs do not need to be programmed at
power-up, however, by including a CPLD reconfiguration
capability on suite 2, all (or just specific ones) of the
CPLDs in a system could be updated in the field. New or
updated suites generated with the off-line PC-based tools
can be distributed and uploaded to the FLASH of the
BIST Processor enabling the processor to manage all non-
volatile updates from a centralized source.

Efficient BIST Data Storage

The BIST Processor development tools analyze duplicate
data found not only in a single suite, but also across all 16
suites. The novel way the storage image is created
enables scalability and pattern re-use, since in multi-board
systems much of the tests and configuration is replicated.
For example, many large telecom PCBs have multiple
data channels, and so typically 4, 8 or 16 FPGAs have
duplicate design data in them. The storage technique used
by the BIST Processor reduces the size of the data image
beyond the built-in data compression, and hence the size
of the FLASH needed for storage is smaller than needed
by commercial configuration device offerings or the ad-
hoc CPLD-FLASH method.

For example, consider a PCB where three 16-Megabit
FPGAs out of six have the same FPGA design, as
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illustrated in Figure 5. Each FPGA requires 8Megabits of
programming data. Using a CPLD and a FLASH to
program the FPGAs requires 48 (6 x 8Mbit) Megabits of
FLASH. Since a CPLD and FLASH can only program 4
FPGAs in slave mode, two CPLDs and two FLASH
devices would be required. With the BIST Processor,
compression of the FPGA data results in an approximately
18 Megabit image. With just a few bytes of data
overhead, the same image can be used for all three
FPGAs, providing an effective savings of 30 Megabits of
FLASH memory. Consequently, the BIST Processor’s
FLASH needs are considerably reduced compared to
using PROMs, commercial configurators from the FPGA
vendors, or an in-house designed sequencer using a CPLD
coupled to a FLASH. The reduced storage needs allow
designers more flexibility in making in-the-field re-
configurable systems, since one FPGA change doesn’t
require an entire duplicate set of configuration data for the
PCB. For instance, consider this same design in Figure 5,
where FPGA 1, 2 and 4 perform a DSP function. At
power-up rather than loading Design A, an alternate
design, Design D is to be loaded based on the target use or
as an enhancement to the original Design A. If both
images were to be used, the CPLD-FLASH method would
require 96 Megabits of FLASH memory. However the
BIST processor approach would only require an
incremental impact on storage area of approximately 6
Megabits.

PCB with 6 FPGAs BIST Processor Storage
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Figure 5. BIST FLASH Memory MAP

Multi-PCB Configuration and Self-Test

The BIST Processor can also be used with multi-board
systems as shown in Figure 6 with the use of related
infrastructure IP. This system uses a multi-drop 1149.1
bus called the Parallel Test Bus (PTB) and “PJTAG”,
along with an addressable Parallel Test and Configuration
(PTC) IC on each board. These are described in the
Parallel Test Architecture (PTA) references [10], [11],
[12]. The PTC IC and “PJTAG” Bus extends the 1149.1
bus to allow simultaneous configuration of the FPGAs as

well as on-board tests for all of the similar PCBs in the
system. The details of this patent-pending technique will
be published in another paper. With the technique
simultaneous test is possible, but individual access to each
PCB is preserved by the unique address of each PTC
device in the system. The references and patent
applications also describe how the PTC eases PCB-to-
PCB interconnect test development when compared to
traditional multi-drop architectures.

In the example of Figure 6, only the Master/Slave PCB
(Type A) has an embedded BIST Processor. This
provides a single, centralized, processor that is dedicated
for managing all system level and on-board configuration
and test. The architecture enables embedding test and
configuration at the system level, including: PCB self test
of the Master/Slave board (Type A in the figure), parallel
configuration and test of the Slave boards (6 Type B
PCBs), execution of ASIC self-test, execution of high-
speed memory tests and system level interconnect test.

Design Design
FLASH| A — A
EPGA

PCB Type A

AS|Ji| ASI

CPU

Figure 6. BIST Processor in a multi-PCB System

The reader will recall the calculations for FPGA
configuration of the 6 FPGA PCB in Figure 5. When this
PCB is replicated in a system six times, the FLASH
storage needed by the BIST Processor on the master will
only increase by a few bytes. The FLASH size needed for
programming the FPGAs is still approximately 24
Megabits (holding two designs for FPGA 1, 2 and 4)
versus the CPLD-FLASH method which requires 12
separate FLASH devices with a total of 576 Megabits and
two CPLD sequencers per PCB. The BIST Processor
approach provides more flexibility, embedded test with
less PCB area and parts cost.

The reader should also note the other non-volatile devices
on the “Type B” PCB. The on-board programming
method with the FAC previously described would enable
the BIST Processor to update the Serial EEPROM and
FLASH associated with FPGA 1 over the parallel test bus
as fast as off-board techniques. When the BIST Processor
is combined with a structured scan architecture, such as
the Parallel Test Bus access to the system non-volatiles
for in-the-field updates becomes simplified.
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BIST Processor Architecture

Figure 7 shows a top-level block diagram of the
embedded test and configuration processor. It shows the
interface of the processor to the FLASH memory, which is
used to store test and configuration suites, the local IEEE
1149.1 bus, and the external connector interface, which is
used develop and validate configuration and test vectors
with the PC based tools. A major advantage of this
approach is that it uses a “code-less” architecture, which
greatly reduces engineering time. It enables the same test
and configuration vectors developed for prototype bring-
up and production to be reused by downloading them (via
1149.1) in the FLASH memory for use by the dedicated
BIST Processor. Using this approach embedded C++,
Java or STAPL [13] software development time, debug
and re-validation of scan based tests is eliminated.
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Figure 7. BIST IC Block Diagram

In Figure 7, the Sys Reset signal is used to reset the
processor circuitry. When Sys_Reset is asserted low, the
registers and state machines of the processor are reset to
their initial states, and the BIST Processor is ready to start
applying tests or configuration data from the FLASH
memory. The Sys_Clock input to the BIST Processor is a
master clock that is used to run the processor. Sys_Clock
is generally provided by a clock source external to the
processor and can be used to derive the TCK frequency of
the 1149.1 bus.

Circuitry in the processor enables selection of either an
external test tool, or the processor, to be connected to and
operate the 1149.1 Test Bus and Digital I/O (DIO). The
selection is made with the External Controller Present
(EXT Present) input. When the EXT Present signal is
asserted low, the circuitry is reset and the 1149.1 Test Bus
and DIO will be controlled from the external connector.
This enables the external 1149.1 controller and allows the
PC-based tools to be used for development and validation,
and for the FLASH memory to be programmed.

Standard 1149.1
Test Bus or new
Parallel JTAG bus

The START/STOP input is used to cause a START or
STOP sequence to occur in the BIST Processor. A start
condition is issued with a rising edge on the
START/STOP input. When a START occurs, the values
on the Test Select inputs determine what test suite the
processor runs, and the processor starts accessing the
configuration and test data in the FLASH. At this point,
the processor begins applying scan vectors. While the
processor is busy applying vectors, a falling edge on the
START/STOP input will cause it to halt and begin a user
defined clean up (reset) sequence.

The memory interface in Figure 7 consists of circuitry and
signals for controlling up to 4 non-volatile FLASH ICs.
The memory interface is coupled directly to the BIST
Processor’s internal Fast Access Controller for optimized
on-board FLASH programming. The memory interface
signals function as follows. The CTRL bus are used in
controlling the FLASH‘s erase, program, and read
operations. These include Chip Enable (CE), Output
Enable (OE) and Write Enable (WE) signals. The
ADDRESS outputs provide the address of the FLASH
memory location to be read or programmed and the
DATA signals provide data to be read from or
programmed to the FLASH memory. A total of 4
Gigabytes of memory is available. During programming
from the external tools, the RDY/BSY signals from up to
4 FLASH devices are used to optimize programming
times by the internal FAC programming mechanism [14]
[15].

The BIST Processor also has a results interface that
reports the outcome of a test, and provides failure and
diagnostic information. This interface is comprised of the
following input and output signals:

FAIL N: This output is asserted low to indicate that the
processor detected a test failure.

DONE N: After the processor is finished running a set of
scan vectors, this output signal is asserted low to indicate
that the processor is no longer busy.

DATA Bus: The DATA bus is re-used to output
diagnostic codes of failing tests.

Serial TX/RX: These signals are the transmit data (TX)
and receive data (RX) for the Universal Asynchronous
Receiver/Transmitter (UART) port of the BIST Processor.

The BIST Processor’s architecture provides for various
mechanisms to report status and output diagnostics
information. One such feature is a user definable test
code, which is associated with each test within a suite (see
Figure 4), and is stored along with the scan data in the
BIST Processor’s FLASH. For instance, if the ASIC
internal test of Figure 4 failed, the diagnostic code on the
data bus at the end of the test execution would be “3”
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indicating that the on-chip BIST for Ul failed. By
providing the diagnostic code to the DATA bus, the code
may be displayed to an LED display, or read by a general
purpose CPU connected to the data bus.

Text messages can also be provided with each diagnostic
code. These messages are assigned using the test and
configuration development tools, and are stored in the
flash with the scan vector suites. They are then
transmitted via the UART port, on the Serial TX/RX
input and output of the BIST Processor. These messages
can be displayed to any serial terminal, such a laptop or a
low cost PDA or can be linked to the serial interface of the
on-board CPU. The text messages and test codes enable a
customer or field service engineer to diagnose a test
failure down to the Field Replaceable Unit (FRU). Tests
can be made granular enough to allow identification of
failing PCBs, plug-in daughter cards, and socketed
components.

Test code logging and failing boundary-scan bits can
optionally be written to the FLASH at the time of failure.
This is particularly useful for systems and PCBs where
displaying of the failure data is not possible or useful in
the field. When the failing PCB is returned to the factory,
software can retrieve the failing bits and display detailed
pin level diagnostics. By logging the failures
automatically for the embedded structural tests, it avoids
the common industry problem of NFF (No Fault Found)
on returned PCBs. The failure that was in the field can
always be identified, even if it can’t be repeated again in
the factory.

Logging the data failures is also instrumental for PCB and
System test during burn-in. Since the burn-in process is
long; continuous or on-demand structural tests can be
executed by the BIST Processor simultaneously in each
product going through burn-in. By embedding the tests,
manufacturers can save on capital equipment costs and
fixturing normally required to run boundary-scan tests
during burn-in.

BIST Sequencer Comparison

When this paper was reviewed, one reviewer felt this
papers concept had already been discussed in reference
[16]. After the invention of the BIST Processor in 2000
by the authors, a paper at ITC 2001 was presented that
described a ‘BIST Sequencer’ as part of a chip set for
hierarchical boundary-scan. The paper devoted a few
paragraphs to the “BIST sequencer” as a slave to a
traditional multi-drop 1149.1 architecture (ie no parallel
test or PJTAG). The BIST Sequencer was used to initiate
(page 485) ASIC BIST tests on board, no discussion of
the ‘sequencer’ covered FPGA configuration or 1149.1
interconnect tests at a PCB or system level. The solution
appears to be a point solution designed for a certain PCB
card used in a Motorola Satellite; it does not appear to be

a generic solution that would work for other PCBs very
well. The primary reason for this and the primary
limitation with the approach by Harrison, et. al (and the
commercial ICs that have sprung up as a result) is that
LFSRs (Linear Feedback Shift Register) are used for
collecting a signature for each test and comparison with
the ‘known good’ LFSR signature stored in FLASH.
While LFSRs are used in IC designs, they do not work
well on PCBs. ICs that use MISRs and LFSRs have basic
DFT rules that prevent what is called ‘X’ states in the scan
data. Scan flip-flops in an IC that will have unknown
behavior and cannot be predicted by ATPG are not
allowed. However, PCB boundary-scan chains and tests
have many ‘X’ states in them. “X” are unknown values in
the “TDO shift data. For instance in SVF, expected and
mask data is shown as:

SDR 25 TDI (OFF5FDF) TDO (1lFFFFFD) MASK
(0000003) ;

Here all but two bits of the scan data is ‘masked’ (the
MASK is an ‘AND’ function with the TDO data) that is
because the other data is not ‘deterministic’.

Typical PCB interconnect tests have hundreds if not
thousands of bits that are ‘masked’ at various times during
the tests, a cursory look at an “SVF” file for an
interconnect test generated by commercial PCB ATPG
tools will show the MASK data is variable and important
in obtaining repeatable results. The first boundary-
register scan during a typical ‘PRELOAD’ instruction
causes the functional logic values captured in the
boundary to be shifted out on TDO. This is problematic
for LFSR approaches. Consider also how an 1149.1
device input pin connected to a free running clock would
provide a ‘toggling’ input bit and variable TDO data. The
same is also true for ‘floating’ input pins, FPGA
configuration results, CPLD configuration or boundary-
scan register bits marked ‘internal’. These bits all vary
the returned TDO data even if the boundary-scan cells are
not part of the PCB test! Even simple 1149.1 instruction
register scans will prevent an LFSR from collecting
repeatable data. The 1149.1 standard allows, and many
designers implement, special ‘capture’ bits in the upper
bits of the IR. What’s interesting is that while Harrison is
using the approach for executing ASIC BIST tests, many
commercial ASIC BIST solutions have non-predictable
bits in their results registers (ie scan operations have both
expected and mask data) precluding using an LFSR even
for some ASIC BIST.

If a PCB level BIST is to be implemented, the
EXPECTED and MASK data for every returned TDO bit,
must be known by the BIST mechanism as with the code-
less BIST Processor described in this paper and patent
references. The Harrison approach would require separate
tests from manufacturing, created specifically for LFSRs
to avoid non-repeatable TDO bits - if at all possible.
Validation of the LFSRs repeatability could only be done
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after a large sample of PCBs were validated. A quick, but
not comprehensive, comparison with the Harrison
approach is given below:

e It appears to be a single board solution, with no
reference to how multiple PCBs are handled.

e There is no support for FPGA configuration;
presumably boards with FPGAs would need
traditional FPGA configuration methods. This adds to
the PCB cost and would also make certain PCB tests
difficult to create and coordinate without the FPGA
configuration integrated.

e There is no decision making or branching as
described in this paper and the patent reference.
Branching based on pop/de-pop conditions on a PCB
or external interfaces are important for generic
solutions.

e  There is no test data compression or test data re-use.
There is a 1 to 1 correspondence between the bits and
the size of the FLASH memory needed by the
Harrison approach. Typically a system, especially
one with similar PCBs in it, has many tests that are
exactly the same in terms of scan operations, without
data re-use then the amount of memory required
would be much larger. This also would preclude
using the Harrison approach for FPGA configuration,
since many PCBs have 4, 8 and even 16 FPGAs that
have the same design loaded. A sequencer does not
have data re-use requiring more memory needed than
the BIST Processor.

e LFSRs prevent the granularity to diagnose a failing
test beyond Go/No-go. This makes PCB
manufacturing process improvements difficult. If the
exact cause can’t be found, then it will be difficult to
improve the process. This is especially needed
during ESS (Environmental Stress Screening) or in-
the-field tests since action would be required to
prevent the defect from surfacing again. Bit-by-Bit
comparison as described in this paper and the patent
references are necessary to identify the problem area
to the pin.

e The Harrison approach requires each test to run to
completion since they are LFSR based (the signature
is completed on the last bit added to the LFSR).
Certain applications need a controlled ‘stop’ and need
to perform it the instant a fault is found. Consider if
one used an LFSR approach to PCB BIST in a
missile that was fired. It would be highly desirable to
stop applying tests the instant one bit ‘miscompares’
and disarm the warhead. It’s not clear if any action by
the BIST sequencer is done on a failure since a
general purpose processor and test bus controller is
part of the Harrison approach described. The BIST
Processor described in this paper has a flexible
‘clean-up’ or reset sequence when a failure occurs.
Many times at the system level, a simple 1149.1 reset
is not enough to bring the system to a safe state. The

BIST Processor doesn’t require an external CPU for
access to results (which may not be functioning).

e  The Harrison approach has similar problems as the
CPU and Test Bus Controller approach in that there
is little correlation between the sequencer and the
external tools used. Data from the external tools is
translated into a format compatible with the
sequencer, however there is no guarantee that
working external tests translate to working embedded
tests. Anecdotal evidence shows that the way various
1149.1 controllers and ATE interpret data and apply
it is different. Since the sequencer is LFSR based, if
the test doesn’t pass, it is difficult to know what
caused the LFSR to miscompare.

Conclusions

The use of structured techniques for test, such as 1149.1
and BIST, will increase as boards and systems become
more complex, with higher IC-to-IC speeds and with less
physical access. Embedded structural test will replace
software-based functional testing at all but the highest-
levels of abstraction. . The limitations of CPU/OS based
functional test development have also been cited by other
authors [17]. At-speed 1149.1 based tests are becoming
more common place, at-speed 1149.1 based memory tests
is more the rule than the exception today.

Software-Based
Embedded
Functional Test

Embedded 1149.1 At-speed tests
At-Speed Interconnect, ASIC BIST,
Memory BIST, DDRRAM/FCRAM

Embedded 1149.1 structural tests
Scan Path, Interconnect, Memory, cluster,
connectors, backplane

Figure 8. Embedded Test Pyramid

The code-less BIST processor provides an effective way
to achieve embedded test with the added benefit of
flexible FPGA configuration and simplified in-the-field
re-configuration of non-volatile ICs in the field.

We have shown an embedded test and configuration
architecture that can be used by board and system
designers to enable novel new approaches to in-system
configuration and self test of systems. A key to easy and
robust test development and configuration with the BIST
Processor is the separation of the infrastructure needed for
test and configuration from the functional system logic.
For PCBs that have FPGAs, test capability is added with
little to no overhead, since the BIST Processor will
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replace the ICs normally used for programming the
FPGAs.

When this paper was reviewed, one reviewer wanted more
cost comparisons. An ITC paper is probably not the right
place to list cost comparisons, there are other places such
as the internet to find these cost comparisons. In general,
the BIST Processor and 64 Megabit FLASH is half the
cost of a 16Megabit configuration only device and similar
in cost to a single CPLD-FLASH FPGA configuration
method. Better cost advantages are observed as more
duplicate FPGA configuration data is needed since the
BIST Processor requires less storage.

Merging FPGA configuration and embedded test
functions onto a dedicated high throughput BIST
Processor offers the best long-term strategy for building
re-configurable and self-testable systems.
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